Question 1056074
Need to Know:
the vertex form of a Parabola opening up(a>0) or down(a<0), 
{{{y=a(x-h)^2 +k}}} 
where(h,k) is the vertex  and  x = h  is the Line of Symmetry , 
the <u>focus is (h,k + p)</u>, With <u>Directrix y = (k - p)</u>, <u>a = 1/(4p)</u>
|
vertex: (0,0) directrix: y = -2
</u> directrix: y = -2
k - p = -2
0 - p = -2
p = 2, a = (1/8)
|

{{{y=(1/8)(x)^2 }}} 

{{{drawing(300,300,   -6, 6, -6, 6, grid(1), 

circle(0,0, 0.3),

graph( 300, 300, -6, 6, -6, 6,0,-2,(1/8)(x)^2  ) ) }}}