Question 1056075
Need to Know:
the vertex form of a Parabola opening up(a>0) or down(a<0), 
{{{y=a(x-h)^2 +k}}} 
where(h,k) is the vertex  and  x = h  is the Line of Symmetry , 
the <u>focus is (h,k + p)</u>, With <u>Directrix y = (k - p)</u>, a = 1/(4p)
|
focus (0,-1) directrix: y = 1
the focus is (h,k + p)
k + p = -1 focus y = -1
<u>k - p = 1</u> directrix: y = 1
k = 0, p = -1, a = -1/4
V(0,0)
|

{{{y=(-1/4)(x-0)^2  + 0}}} 
{{{y=(-1/4)(x)^2 }}} 

{{{drawing(300,300,   -6, 6, -6, 6, grid(1), 
circle(0, -1,0.3),
circle(0,0, 0.3),

graph( 300, 300, -6, 6, -6, 6,0,1,(-1/4)(x)^2  ) ) }}}