Question 1054626

Use the vertex 
(h, k)
 and a point on the graph 
(x, y)
 to find the general form of the equation of the quadratic function.
(h, k) = (−5, −1),    (x, y) = (−7, 3)
f(x) = ________
<pre>Vertex/Standard form: {{{y = a(x - h)^2 + k}}}
{{{3 = a(- 7 - - 5)^2 + - 1}}} ------ Substituting (- 7, 3) for (x, y) and (- 5, - 1) for (h, k)
{{{3 = a(- 2)^2 - 1}}}
{{{3 = 4a - 1}}}
{{{3 + 1 = 4a}}}_____{{{4 = 4a}}}______{{{4/4 = a}}}______1 = a

Vertex/Standard form: {{{y = (x + 5)^2 - 1}}}______{{{y = x^2 + 10x + 25 - 1}}} 
{{{highlight_green(matrix(1,3, General, "form:", f(x) = x^2 + 10x + 24))}}}