Question 1054609
{{{ A = P*( 1 + r/n )^(n*t) }}}
{{{ A = 11900 }}}
{{{ P = 1400 }}}
{{{ r = .023 }}}
{{{ n = 4 }}}
Find {{{ t }}} in yrs
------------------------------
{{{ 11900 = 1400*( 1 + .023/4 )^( 4t ) }}}
{{{ ( 1 + .023/4 )^(4t) = 8.5 }}}
{{{ ( 1 + .00575 )^(4t) = 8.5 }}}
{{{ 1.00575^(4t) = 8.5 }}}
Take the log base 10 of both sides
{{{ log( 1.00575^(4t)) = log( 8.5 ) }}}
{{{ log( 1.00575^4 ) + log( 1.00575 )^t) = log( 8.5 ) }}}
{{{ 4* log( 1.00575 ) + t* log( 1.00575 ) = log( 8.5 ) }}}
{{{ 4*.00249 + .00249t = .92942 }}}
{{{ .00249t = .92942 - .00996 }}}
{{{ .00249t = .91946 }}}
{{{ t = 369.25 }}}
I get a huge number
----------------------
20.65 yrs doesn't seem to work
{{{ 1.00575^(4t) = 8.5 }}}
{{{ 1.00575^82.6 = 8.5 }}}
{{{ 1.6057 = 8.5 }}} ??
Unless I messed up at the start
Are you sure all the data is correct?