Question 1052904
<font face="Times New Roman" size="+2">


Use the distance formula:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ d\ =\ \sqrt{(x_1\ -\ x_2)^2\ +\ (y_1\ -\ y_2)^2}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{(10\ -\ x)^2\ +\ (0\ -\ y)^2}\ =\ \sqrt{(-8\ -\ x)^2\ +\ (6\ -\ y)^2}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{(-10\ -\ x)^2\ +\ (0\ -\ y)^2}\ =\ \sqrt{(-8\ -\ x)^2\ +\ (6\ -\ y)^2}]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \sqrt{(10\ -\ x)^2\ +\ (0\ -\ y)^2}\ =\ \sqrt{(-10\ -\ x)^2\ +\ (0\ -\ y)^2}]


Solve the system for *[tex \Large x] and *[tex \Large y].  Hint:  Square both sides of each equation, expand the binomials, eliminate terms common to both sides, and see what you have left.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>