Question 1052239
The length of the segment AB = {{{sqrt((x2-x1)^2+(y2-y1)^2)}}} where x2 = 10 , 
x1 = -2, y2 = -14 and y1 = 0
AB = {{{sqrt((10-(-2))^2+(-14-0)^2)}}}
AB = {{{sqrt((10+2)^2+(-14)^2)}}}
AB = {{{sqrt((12)^2+(-14)^2)}}} = AB = {{{sqrt((12)^2+(14)^2)}}}

The length of the segment BC = {{{sqrt((x2-x1)^2+(y2-y1)^2)}}} where 
x2 = 10 , x1 = -4, y2 = -14 and y1 = -2
BC = {{{sqrt((10-(-4))^2+(-14-(-2))^2)}}}
BC = {{{sqrt((10+4)^2+(-14+2)^2)}}}
BC = {{{sqrt((14)^2+(-12)^2)}}}
BC = {{{sqrt((14)^2+(-12)^2)}}} = BC = {{{sqrt((12)^2+(14)^2)}}}

So we can see that the lengths of the two segments are the same at
{{{sqrt((12)^2+(14)^2)}}}
Since the segments are the same length Segment AB ~= Segment BC