Question 1050561
Step 1: Find {{{x*y}}} and {{{x^2}}} as it was done in the table below.

{{{x}}}..|..{{{y}}}|{{{x*y}}}|{{{x^2}}}
{{{-2}}}|..{{{3}}}|{{{-6}}}..|{{{4}}}
{{{-1}}}|..{{{1}}}|{{{-1}}}..|{{{1}}}
{{{1}}}..|..{{{2}}}|{{{2}}}...|{{{1}}}
{{{1}}}..|{{{-1}}}|{{{-1}}}..|{{{1}}}
{{{2}}}..|{{{-2}}}|{{{-4}}}..|{{{4}}}


Step 2: Find the sum of every column:

{{{sum(x)= 1}}}
{{{sum(y)=3}}}
{{{sum(xy)=-10}}}
{{{sum(x^2)=11}}}


Step 3: Use the following equations to find {{{a}}} and {{{b}}}:


{{{a=(sum(y)*sum(x^2)-sum(x)*sum(xy))/(n(sum(x^2)-sum(x)^2))}}}

{{{a=(3*(11)-1(-10))/(5*11-1^2)}}}

{{{a=(33+10)/(55-1)}}}

{{{a= 43/54}}}

{{{a=0.796}}}


{{{b=(n*sum(xy)-sum(x)*sum(y))/(n(sum(x^2)-sum(x)^2))}}}

{{{b=(5*(-10)-1*3)/(5*11-1^2)}}}

{{{b= -53/54}}}

{{{b=-0.981}}}


 Step 4: Substitute {{{a}}} and {{{b}}} in regression equation formula

{{{y = a + bx}}}

The equation of the regression line is:

{{{y = 0.796 − 0.981x}}}

or

{{{y = -0.98x+ 0.8}}} 

so, your answer is B.) {{{ y = -0.98x + 0.8 }}}