Question 1050203
{{{sqrt(2x+11)}}}-{{{sqrt(x+9)}}}={{{sqrt(x-6)}}}



{{{(2x+11)}}}-{{{2}}}*{{{sqrt(2x+11)}}}*{{{sqrt(x+9)}}}+{{{(x+9)}}}={{{(x-6)}}}


{{{(3x+20)}}}-{{{2}}}*{{{sqrt(2x+11)}}}*{{{sqrt(x+9)}}}={{{(x-6)}}}


{{{(3x+20)}}}-{{{(x-6)}}}={{{2}}}*{{{sqrt(2x+11)}}}*{{{sqrt(x+9)}}}

{{{(2x+26)}}}={{{2}}}*{{{sqrt(2x+11)}}}*{{{sqrt(x+9)}}}

{{{(4x^2+104x+676)}}}={{{4}}}*{{{(2x+11)}}}*{{{(x+9)}}}

{{{(4x^2+104x+676)}}}={{{4}}}*{{{(2x^2+18x+11x+99)}}}

{{{(4x^2+104x+676)}}}={{{(8x^2+72x+44x+396)}}}

simplify
{{{(0)}}}={{{(4x^2+12x-280)}}}

thanks to quadratic solver
*[invoke quadratic "x", 4, 12, -280 ]