Question 1049962


Find the first five terms of the recursive sequence defined by the function below.

{{{f(n) = 2f(n- 1) + 3n}}}, where {{{f(1) = -2}}}

if  {{{f(1) = -2}}}, means first term is

{{{ a[1]=-2}}}

then 

{{{n=2}}}

 -> {{{2f(2-1) + 3*2}}}-> {{{2f(1) + 6}}}-> {{{2(-2) + 6}}}->{{{-4+6=2}}}

{{{a[2]= 2}}}...second term 

{{{n=3}}}

 -> {{{2f(3-1) + 3*3}}}-> {{{2f(2) + 9}}}-> {{{2(2) +9}}}->{{{4+9=13}}}

{{{a[3]= 13}}}...third term

{{{n=4}}}

 -> {{{2f(4-1) + 3*4}}}-> {{{2f(3) + 12}}}-> {{{2(13) +12}}}->{{{26+12=38}}}

{{{a[4]= 38}}}.....forth term


{{{n=5}}}

 -> {{{2f(5-1) + 3*5}}}-> {{{2f(4) + 15}}}->{{{ 2(38) +15}}}->{{{76+15=91}}}

{{{a[5]= 91}}}

so,the first five terms of the recursive sequence are:{{{ -2}}},{{{ 2}}},{{{ 13}}},{{{ 38}}},{{{ 91}}},.....