Question 1049337
<pre>Here are all possible dice rolls with the
ones that have sum exactly 7 colored red:

(1,1) (1,2) (1,3) (1,4) (1,5) <font color="red"><b>(1,6)</b></font>

(2,1) (2,2) (2,3) (2,4) <font color="red"><b>(2,5)</b></font> (2,6) 

(3,1) (3,2) (3,3) <font color="red"><b>(3,4)</b></font> (3,5) (3,6) 

(4,1) (4,2) <font color="red"><b>(4,3)</b></font> (4,4) (4,5) (4,6) 

(5,1) <font color="red"><b>(5,2)</b></font> (5,3) (5,4) (5,5) (5,6) 

<font color="red"><b>(6,1)</b></font> (6,2) (6,3) (6,4) (6,5) (6,6)

Count the red ones.  There are 6 of them.
Count all of them.  There are 36 of them.

So the probability is 6 out of 36 or 6/36 
which reduces to 1/6.

Edwin</pre>