Question 1047115
{{{y = 3x - 25}}}.......eq.1  
{{{y = -(3/4)x + 17}}}.......eq.2
-----------------------------------since left sides equal, we have 
 
{{{3x - 25=-(3/4)x + 17}}}......solve for {{{x}}}

{{{3x +(3x/4)=25 + 17}}}

{{{(12x +3x)/4=42}}}

{{{15x=42*4}}}

{{{15x=168}}}

{{{x=168/15}}}

{{{x = 56/5}}}
 
or approximately

{{{x=11.2}}}

find {{{y}}}:

{{{y = 3x - 25}}}.......eq.1 

{{{y = 3*(56/5) - 25}}}

{{{y = 168/5) - 125/5}}}

{{{y = 43/5}}}
 
or approximately

{{{y = 8.6}}} 

 so, the lines intersect at point P ({{{56/5}}},{{{43/5}}})

 to find out how far is P from the origin ({{{0}}},{{{0}}}), use distance formula:

 *[invoke distance_formula 0, 0, 56/5, 43/5]