Question 1046810
Let the consecutive odd integers be {{{ n }}} and {{{ n + 2}}}
{{{ n*( n + 2 ) = 3*( n + n + 2 ) + 39 }}}
{{{ n^2 + 2n = 6n + 6 + 39 }}}
{{{ n^2 - 4n - 45 = 0 }}}
{{{ ( n - 9 )*( n + 5 ) = 0 }}}
{{{ n = 9 }}} ( this is the positive choice )
and
{{{ n + 2 = 11 }}}
-----------------
The integers are 9 and 11
------------
check:
{{{ n*( n + 2 ) = 3*( n + n + 2 ) + 39 }}}
{{{ 9*( 9 + 2 ) = 3*( 9 + 9 + 2 ) + 39 }}}
{{{ 9*11 = 3*20 + 39 }}}
{{{ 99 = 60 + 39 }}}
{{{ 99 = 99 }}}
OK