Question 1046338
 if the width is {{{W=(x+5)/(x+1)}}} and the length is {{{L=(x+3)/x}}},
 the perimeter if the basketball court will be 
{{{P=2(W+L)}}}
{{{P=2((x+5)/(x+1)+(x+3) /x)}}}

{{{P=2((x(x+5))/(x(x+1))+((x+3) (x+1))/((x+1)x))}}}

{{{P=2(x(x+5)+(x+3) (x+1))/((x+1)x))}}}


The length of a rectangle in terms of X is {{{(x^2 - 2x - 8)/ (x-5) }}}and the width of the rectangle is {{{(x^2-7x+10)}}}. 

 the area of the rectangle in terms of X:

 {{{A=((x^2 - 2x - 8)/ (x-5) )(x^2-7x+10)}}}

{{{A=((x+2) (x-4)/ cross(x-5) )  ((x-2)cross( (x-5)))}}}

{{{A=(x+2) (x-4) (x-2)}}}