Question 1045515
.
ABCD is a rectangle such that AD = 2AB and the diagonal AC = root5 d the the perimeter of rectangle ABCD=?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


<pre>
We know AB=CD.

AC=BD={{{sqrt(5)}}}.

Perimeter={{{2AD+2AB}}}.

Let {{{AB}}}={{{x}}}.  Then {{{AD}}}={{{2x}}}.

You have right angle triangle

{{{x^2}}} + {{{(2x)^2}}} = {{{(sqrt(5))^2}}},

{{{5x^2}}}={{{5}}},

x = 1.

Then AB = 1, AD = 2, and the perimeter = 1 + 2 + 1 + 2 = 6 units.

<U>Answer</U>.  The perimeter is 6 units.
</pre>

For many other solved similar problems see the lessons

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Points-lines-and-rays/Solved-problems-on-the-perimeter-of-a-triangle.lesson>Solved problems on the perimeter and side lengths of a triangle</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Points-lines-and-rays/Solved-problems-on-the-perimeter-and-side-lengths-of-a-right-angled-triangle.lesson>Solved problems on the perimeter and side lengths of a right-angled triangle</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Points-lines-and-rays/Solved-problems-on-the-perimeter-and-side-lengths-of-a-parallelogram.lesson>Solved problems on the perimeter and the side lengths of a parallelogram</A>

&nbsp;&nbsp;&nbsp;&nbsp;- <A HREF=http://www.algebra.com/algebra/homework/Points-lines-and-rays/Solved-problems-on-the-perimeter-and-side-lengths-of-a-rectangle.lesson>Solved problems on the perimeter and side lengths of a rectangle</A>

in this site.