Question 1045480
{{{1-d=1/(1+i)}}}
{{{1-1/(1+i)=d}}}
{{{d=(1+i-1)/(1+i)}}}
{{{d=i/(1+i)}}}
{{{d=(i/(1+i))((1-i)/(1-i))}}}
{{{d=i(1-i)/(2)}}}
{{{d=(i-i^2)/2}}}
{{{d=(i+1)/2}}}


{{{d^4=((1+i)/2)^4}}}
{{{d^4=(1+i)^4/16}}}
{{{d^4=(1/16)(1+i)^2(1+i)^2}}}
{{{d^4=(1*1^4*i^0 + 4*1^3*i^1 + 6*1^2*i^2 + 4*1^1*i^3 + 1*1^0*i^4)/16}}}
{{{d^4=(1+4i+6*i^2+4*i^3+i^4)/16}}}
{{{d^4=(1-6+1+4i+4i^3)/16}}}
{{{d^4=(-4+4i+4i^3)/16}}}
{{{highlight_green(d^4=(-1+i+i^3)/4)}}}  ?


continuing....
{{{d^4=(i^2+i+i^3)/4}}}
{{{i(i+1+i^2)/4}}}