Question 1045002

How can the problem: Find 3 consecutive odd integers such that 4 times the first is 44 more than the sum of the second and third?
<pre>Let <b><u>1<sup>st</b></u></sup> integer be F
Then <b><u>2<sup>nd</b></u></sup> and <b><u>3<sup>rd</b></u></sup> are: F + 2, and F + 4, respectively
We then get: 4F = F + 2 + F + 4 + 44
4F = 2F + 50
4F - 2F = 50
2F = 50
F, or <b><u>1<sup>st</b></u></sup> integer = {{{50/2}}}, or {{{highlight_green(25)}}}
The <b><u>2<sup>nd</b></u></sup> and <b><u>3<sup>rd</b></u></sup> integers are: {{{highlight_green(matrix(1,9, 25 + 2, or, 27, and, 25 + 4, or, 29, ",", respectively))}}}
Yes, it is that simple...not complex at all!