Question 1044356
First, find the intersection points. 
They will be the limits of integration.
{{{x^2+3x-3=5x}}}
{{{x^2-2x-3=0}}}
{{{(x-3)(x+1)=0}}}
Two solutions,
{{{x-3=0}}}
{{{x=3}}}
and
{{{x+1=0}}}
{{{x=-1}}}
.
.
.
*[illustration gr7.JPG].
.
.
.
So integrate between {{{x=-1}}} and {{{x=3}}}
{{{A=int((f(x)-g(x)),dx,x=-1,3)}}}
{{{A=int(5x-x^2-3x+3)),dx,x=-1,3)}}}
{{{A=int(2x-x^2+3)),dx,x=-1,3)}}}
{{{A=x^2-x^3/3+3x+C)}}}
{{{A=(3^2-3^3/3+3(3))-((-1)^2-(-1)^3/3+3(-1))}}}
{{{A=(9-9+9)-(1+1/3-3)}}}
{{{A=(9)-(-5/3)}}}
{{{A=32/3}}}