Question 1043409
<pre>
Here are all 36 possible rolls with the 7's and 11's 
in red:  



(1,1) (1,2) (1,3) (1,4) (1,5) <font color = "red"><b>(1,6)</b></font>

(2,1) (2,2) (2,3) (2,4) <font color = "red"><b>(2,5)</b></font> (2,6) 

(3,1) (3,2) (3,3) <font color = "red"><b>(3,4)</b></font> (3,5) (3,6) 

(4,1) (4,2) <font color = "red"><b>(4,3)</b></font> (4,4) (4,5) (4,6) 

(5,1) <font color = "red"><b>(5,2)</b></font> (5,3) (5,4) (5,5) <font color = "red"><b>(5,6)</b></font> 

<font color = "red"><b>(6,1)</b></font> (6,2) (6,3) (6,4) <font color = "red"><b>(6,5)</b></font> (6,6) 

Count 'em!  There are 8 red ones, so that's 8 out of 36,
or a probability of {{{8/36}}} which reduces to {{{2/9}}}.

Edwin</pre>