Question 1042865
If the center is at (h,k) and radius = {{{ r }}} then
the equation is {{{ ( x-h )^2 + ( y-k )^2 = r^2 }}}
Since it touches the x-axis, {{{ k = r }}}
and it's given {{{ r = 5 }}}, so
{{{ ( x - h )^2 + ( y - 5 )^2 = 5^2 }}}
------------------------------
If the radius bisects the chord on the y-axis, that
radius is parallel to the x-axis. 1/2 of the chord = {{{ 3 }}}.
{{{ r = 5 }}}.  This forms a 3-4-5 right triangle, so the center
of the circle is {{{ 4 }}} units from the y-axis, so {{{ h = 4 }}}
Now I have: {{{ ( x - 4 )^2 + ( y - 5 )^2 = 25 }}}
Here it is plotted:
{{{ graph( 400, 400, -2, 12, -2, 12, sqrt( 25 - ( x-4 )^2 ) + 5, -sqrt( 25 - ( x-4 )^2 ) + 5 ) }}}