Question 1042625
{{{ If you begin at the bottom at {{{ t=0 }}}, then the
graph that describes the ride is a sine function.
-------------------
In order to always be positive and {{{ 3 }}} m above the t-axis
 I add {{{ 24/2 + 3 = 15 }}}
to the sine function. Also, I multiply by {{{ 12 }}} to get 
{{{ 24 }}} m peak to peak
--------------------
In order to get {{{ 2*pi }}} radians every {{{ 32 }}} sec, the 
function has to be:
{{{ h(t) = 12*sin( (pi/16)*t ) + 15 }}}
where {{{ t }}} = time of the ride in seconds
(A)
Here's the plot of this function for {{{ 192/32 = 6 }}} periods
{{{ graph( 900, 500, -20, 192, -10, 30, 12*sin( (pi/16)*x ) + 15 ) }}}
-------------------
(B)
Here's my graph plus that of friends who boarded before me ( 1/8 of a rotation ahead )
{{{ 12*sin(( pi/16)*t + pi/4) + 15 ) }}}
{{{ graph( 900, 500, -20, 192, -10, 30, 12*sin( (pi/16)*x ) + 15, 12*sin(( pi/16)*x + pi/4) + 15 ) }}} 
(C)
Rotating the opposite direction means the sine is inverted ( negative )
{{{ -12*sin( (pi/16)*x ) + 15 ) }}}
{{{ graph( 900, 500, -20, 192, -10, 30, -12*sin( (pi/16)*x ) + 15 ) }}}
-------------------
Hope this all makes sense -what I do piece it together
and force it to conform to the requirements