Question 1041838
<font face="Times New Roman" size="+2">
Use the Point-Slope form of an equation of a line:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\ -\ y_1\ =\ m(x\ -\ x_1) ]


where *[tex \Large \left(x_1,y_1\right)] are the coordinates of the given point and *[tex \Large m] is the given/calculated slope.


Then rearrange into Slope-Intercept form by solving for *[tex \Large y] in terms of everything else.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>