Question 1041491
The volume of a cone is,
{{{V=(pi/3)r^2*h}}}
In this case,
{{{V=(pi/3)(3)^2*14}}}
{{{V=42pi}}}
So,
{{{V[IC]=42pi/2=21pi}}}
There is also a relationship between the radius and the height of the ice cream within the cone.
When {{{r=3}}}, {{{h=14}}} and when {{{r=0}}}, {{{h=0}}}
So then, 
{{{r[IC]=(3/14)h[IC]}}}
So calculating the ice cream volume,
{{{(pi/3)r[IC]^2*h[IC]=1pi}}}
Substituting,
{{{(pi/3)(3/14)^2*h[IC]^2*h[IC]=21pi}}}
{{{h[IC]^3=1372}}}
{{{h[IC]=(1372)^(1/3)}}}
.
.
.
I leave it to you to get the decimal equivalent of the cube root.