Question 1041439
<font face="Times New Roman" size="+2">


If *[tex \Large f(x)\ =\ f(-x)] then *[tex \Large f] is an even function.  If *[tex \Large f(x)\ =\ -f(x)] then *[tex \Large f] is an odd function.  If neither relation holds, then *[tex \Large f] is neither odd nor even.


So, you gotta ask yourself is


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ -5x^2\ +\ 4]


equal to


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ -5(-x)^2\ +\ 4]


Or is


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ -5x^2\ +\ 4]


equal to


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  -(-5x^2\ +\ 4)]


or neither?


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>