Question 1040597
 Given that loga2 = 0.693 and loga7 = 1.946, evaluate loga2/7. 
:
{{{log(a,(2/7))}}} can be expanded to
{{{log(a,(2))}}} - {{{log(a,(7))}}}
therefore
.693 - 1.946 = -1.253
{{{log(a,(2/7))}}} = -1.253
:
We can evaluate a
The exponent equiv
{{{a^-1.253}}} = {{{2/7}}}
using common logs
{{{log((a^-1.253))}}} = {{{log((2/7))}}}
{{{-1.253log((a))}}} = -.5441
log(a) = {{{-.5441/-1.253}}}
log(a) = .4342
Find the antilog
a = 2.717
:
:
Check using {{{log(a,(2)) = .693}}}
{{{log(2.717,(2)) = .693}}}
{{{2.717^.693}}}  = 1.999 ~ 2