Question 1040399
<font size=3 color=black>
Use <a href="http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf">this table</a> (or similar) to find that the critical z value is  2.326


Look at the confidence level of 98% (bottom of page). Then look directly above it to find the value  2.326


So z =  2.326


-----------------------------------------------------------------


Given information
phat = 0.17
n = 800


Standard Error:
SE = sqrt(phat*(1-phat)/n)
SE = sqrt(0.17*(1-0.17)/800)
SE = 0.0132806249853


Margin of error
ME = z*SE
ME = 2.326*0.0132806249853
ME = 0.0308907337158


Lower Bound (L) of the confidence interval
L = phat - ME
L = 0.17 - 0.0308907337158
L = 0.1391092662842
L = 0.139


Upper Bound (U) of the confidence interval
U = phat + ME
U = 0.17 + 0.0308907337158
U = 0.2008907337158
U = 0.201


The confidence interal is (L,U) = (0.139, 0.201) which is equilavent to saying L < p < U which turns into <font color=red size=5>0.139 < p < 0.201</font>


So the answer is choice <font color=red size=5>B) 0.139 < p < 0.201</font>


The population proportion p is somewhere between 13.9% and 20.1% and we're 98% confident of this fact.

</font>