Question 1040254
Average temperature = {{{(1/12)int((50 + 25sin((pi*t)/6)), dt,0,12)= 
(1/12)*(50t - (150/pi)cos((pi*t)/6))[0]^12 }}}

={{{(1/12)(50*12 - (150/pi)*cos(2*pi) - 0 + (150/pi)*cos0) = 50}}} degrees Fahrenheit.


The minimum temperature happens when t = 9: 

T = {{{50 + 25sin((3*pi)/2) = 50 - 25 = 25}}} degrees Fahrenheit.


The maximum temperature happens when t = 3: 

T = {{{50 + 25sin((pi)/2) = 50 + 25 = 75}}} degrees Fahrenheit.

Note that, the average temperature is also the average of the minimum and maximum values, due to the cyclical nature of the temperature T.