Question 1039756
<pre><b>

<u>      </u>, <u>      </u>, <u>  -12 </u>, <u>      </u>, <u>      </u>, <u>      </u>, <u>   8  </u>, ...

Let d be the common difference between terms, then
we subtract d each time going to the left of -12, and
we add d each time going to the right of -12.

<u>-12-2d</u>, <u> -12-d</u>, <u>  -12 </u>, <u>-12+d </u>, <u>-12+2d</u>, <u>-12+3d</u>, <u>-12+4d</u>, ...

So -12+4d = 8 
       4d = 20
        d = 5

Then first term = a<sub>1</sub> = -12-2d = -12-2(5) = -12-10 = -22

{{{S[n]}}}{{{""=""}}}{{{expr(n/2)(2a[1]+(n-1)d^"")}}}

{{{S[10]}}}{{{""=""}}}{{{expr(10/2)(2(-22)+(10-1)(5)^"")}}}

{{{S[10]}}}{{{""=""}}}{{{5(-44+(9)(5)^"")}}}

{{{S[10]}}}{{{""=""}}}{{{5(-44+45^"")}}}

{{{S[10]}}}{{{""=""}}}{{{5(1^"")}}} 

{{{S[10]}}}{{{""=""}}}{{{5}}}

<u>  -22 </u>, <u>  -17 </u>, <u>  -12 </u>, <u>  -7  </u>, <u>  -2  </u>, <u>   3  </u>, <u>   8  </u>, <u>   13 </u>, <u>   18 </u>, <u>  23  </u>, ...

Checking: -22-17-12-7-2+3+8+13+18+23 = 5

Edwin</pre></b>