Question 1039350
Hello! In this problem, I had some trouble: 
"Find the value of t<sub>2</sub> + t<sub>3</sub> + t<sub>4</sub> + ... + t<sub>98</sub> 
if 
t<sub>1</sub> + t<sub>2</sub> + t<sub>3</sub> +... is an arithmetic progression
with the common difference = 1, and S<sub>98</sub> = 137.
<pre><b>
Use the sum formula:

{{{S[n]}}}{{{""=""}}}{{{expr(n/2)(2t[1] + (n-1)d^"")}}}

with {{{n=98}}}, {{{d=1}}}

{{{S[98]}}}{{{""=""}}}{{{expr(98/2)(2t[1] + (98-1)1^"")}}}  

{{{S[98]}}}{{{""=""}}}{{{49(2t[1] + 97)}}}

Substitute {{{S[98]}}}{{{""=""}}}{{{137}}}

{{{137}}}{{{""=""}}}{{{49(2t[1] + 97)}}}

{{{137}}}{{{""=""}}}{{{98t[1] + 4753)}}}

{{{98t[1] + 4753)}}}{{{""=""}}}{{{137}}}

{{{98t[1]}}}{{{""=""}}}{{{-4616}}}

{{{t[1]}}}{{{""=""}}}{{{-4616/98}}}

{{{t[1]}}}{{{""=""}}}{{{-2308/49}}}

We want to find 

t<sub>2</sub> + t<sub>3</sub> + t<sub>4</sub> + ... + t<sub>98</sub> 

Which we can get by subtracting t<sub>1</sub> from S<sub>98</sub> or 137

Answer: {{{137-(-2308/49)}}}{{{""=""}}}{{{137*49/49+2308/49}}}{{{""=""}}}{{{6713/49+2308/49}}}{{{""=""}}}{{{9021/49}}}

An ugly answer, but it's correct,
according to what is given!

Edwin</pre></b>