Question 1039261
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ y\left(x(t)\right)\ =\ \ln\left(7\,\cdot\,5e^{\frac{t}{9.1}}\right)]


The log of a product is the sum of the logs, so:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ =\ \ln(35)\ +\ \ln\left(e^{\frac{t}{9.1}}\right)]


Then *[tex \Large \log_b(x^n)\ =\ n\ \log_b(x)]  and *[tex \Large \log_b(b)\ =\ 1], so:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ =\ \ln(35)\ +\ \frac{t}{9.1}\ln(e)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ =\ \ln(35)\ +\ \frac{t}{9.1}]


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>