Question 1037722
<font face="Times New Roman" size="+2">


*[tex \LARGE \ \ \ \ \ \ \ \ \ \  \frac{d}{dx}\left\[\cos(2x)\right\]\ =\ -\sin(2x)\,\cdot\,\frac{d}{dx}\left\[2x\right\]\ =\ -2\sin(2x)]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ f'(2.4)\ =\ -2\sin(2(2.4))]


The result of the calculation is the slope of the tangent, and the inverse tangent of that value is the elevation.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it
<img src="http://c0rk.blogs.com/gr0undzer0/darwin-fish.jpg">
*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>