Question 1036033
x = the amount she made on lunches.
y = the amount she made on dinners.


her profit on lunches was .15x
her profit on dinners was .20x


she took in a total of 3000 dollars.
x + y = 3000


her total profit was 539.50
.15x + .20y = 539.50


you have 2 equations that need to be solved simultaneously because the same solution applies to both.


they are:


x + y = 3000
.15x + .20y = 539.50


we'll solve by elimination.


multiply both sides of the second equation by 5 and leave the first equation as is to get:


x + y = 3000
.75x + y = 2697.50


subtract the second equation from the first to get:


.25x= 302.50


divide both sides of this equation by .25 to get x = 1210.


since x + y = 3000, then x = 1210 and y = 3000 - 1210 = 1790.


she made 1210 on lunch and 1790 on dinner for a total of 3000 dollars.


she made .15 * 1210 = 181.50 profit on lunch and .20 * 1790 = 358.00 profit on dinner for a total profit of 181.50 + 358.00 = 539.50.


solution looks good.


the solution is that 1210 dollars was spent on lunch.