Question 89329
3 and the sqrt of 8 + 4 and the sqrt of 50
Do you mean 3sqrt8 + 4sqrt50
If it is the problem unfolds this way:
=3sqrt4*sqrt2 + 4sqrt25*sqrt2

= 3*2sqrt2 + 4*5sqrt2

= 6sqrt2 + 20sqrt2

= 26sqrt2
----------------------------------
 
sqrt of 12^2y^3 - the sqrt of 27x^4y 
= sqrt(12^2y^2)*sqrty - sqrt(9x^4)*sqrt(3y)

= 12y*sqrt(y) - 3x^2*sqrt(3y)
----------------------------------

5th root of 4x^3y^4 * 5th root of 8x^2y^3

= 5th root (32x^5y^7)

= 2xy*5th rt. of y^2
------------------------------------
 
Sqrt of 3x^3/4y^2 * sqrt of 9x^2/2y^4

= sqrt[27x^5/8y^6]

= [(3/4)x^2/y^3]*sqrt[(3/2)x]
-------------------------------------

sqrt of 3x^4 divided by the sqrt of 9xy^5 

= [x^2sqrt(3)] /[3y^2sqrt(xy)]

Multiply numerator and denominator by sqrt(xy) to get:

= [x^2sqrt(3xy)] / [3y^2(xy)]

Cancel factors common to numerator and denominator to get:

= [xsqrt(3xy)] / [3y^3]
======================
Cheers,
Stan H.