Question 1033073
Deandre's boat has a top speed of 
10
 miles per hour in still water. While traveling on a river at top speed, he went 
16
 miles upstream in the same amount of time he went 
24
 miles downstream. Find the rate of the river current.
<pre>Let me say that the speed of the current could NEVER be {{{" "<= 0}}}
Let speed of current be C
Time taken to go upstream: {{{16/(10 - C)}}}
Time taken to go downstream: {{{24/(10 + C)}}}
We then get: {{{16/(10 - C) = 24/(10 + C)}}}
24(10 - C) = 16(10 + C) ------- Cross-multiplying
240 - 24C = 160 + 16C
- 24C - 16C = 160 - 240
- 40C = - 80
C, or speed of current = {{{(- 80)/(- 40)}}}, or {{{highlight_green(matrix(1,2, 2, mph))}}}