Question 1032256
    tan(x)+cot(x)=4sin(2x)
-----
    tan(x)+cot(x) = 8sin(x)*cos(x)
Multiply thru by sin*cos
sin^2 + cos^2 = 8sin^2*cos^2
8sin^2cos^2 = 1
sin^2*(1 - sin^2) = 1/8
sin^4 - sin^2 + 1/8 = 0
Sub x for sin^2
x^2 - x + 1/8 = 0
*[invoke solve_quadratic_equation 1,-1,.125]
=============
sin^2 =~ 0.853553390593274
x = 67.5, 112.5 + k*360 degs
x = 3pi/8, 5pi/8 + k*2pi radians
k = any integer
===================
sin^2 = 0.146446609406726 --> complements of angles above.
===============