Question 1032261

The expression (2^4)(2^5)(2^-5)/sqrt(4^3)(2^4)(2^-5) equals 2^n where n is?


By the way: The sqrt is only on the 4^3.

If {{{((2^4)(2^5)(2^-5))/(sqrt(4^3)(2^4)(2^-5)) = 2^n}}}, then: 
{{{2^5/sqrt(4^3) = 2^n}}} -----> {{{2^5/sqrt((2^2)^3) = 2^n}}} ------> {{{2^5/sqrt(2^6) = 2^n}}} -------> {{{2^5/2^3 = 2^n}}} -------> {{{2^(5 - 3) = 2^n}}} ---------> {{{2^2 = 2^n}}} ---------> {{{highlight_green(2 = n)}}}