Question 88881
{{{(x^3+6x^2-x-30)/(x-2)}}} Start with the given expression




This expression also looks like



<TABLE><TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR></TABLE>


In order to divide this, we need to ask ourselves: 

How many times does {{{x}}} go into {{{x^3 }}}?
It goes in  {{{x^2}}} times  (ie {{{x^3 /x=x^2}}}). So place {{{x^2}}} over {{{x^3 }}} 
 
<TABLE border=0><TR><TD></TD><TD>{{{x^2}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR></TABLE>

Now multiply {{{x^2}}} by {{{x - 2}}} to get {{{x^3 - 2x^2}}}

<TABLE border=0><TR><TD></TD><TD>{{{x^2}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR></TABLE> 

Now Subtract {{{x^3 - 2x^2}}} from {{{x^3+6x^2-x-30}}} and bring down -x-30

<TABLE border=0><TR><TD></TD><TD>{{{x^2}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR></TABLE> 
 

Now how many times does {{{x}}} go into {{{8x^2}}}?
It goes in  {{{8x}}} times  (ie {{{8x^2 /x =8x}}}). So place {{{8x}}} over {{{6x^2}}} 
 
<TABLE border=0><TR><TD></TD><TD>{{{x^2+8x}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR></TABLE>

Now multiply {{{8x}}} by {{{x - 2}}} to get {{{8x^2 - 16x}}}

<TABLE border=0><TR><TD></TD><TD>{{{x^2+8x}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - 16x}}}</TD></TR></TABLE> 

Now Subtract {{{8x^2 - 16x}}} from {{{8x^2 - x - 30}}}

<TABLE border=0><TR><TD></TD><TD>{{{x^2+8x}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - 16x}}}</TD></TR><TR><TD></TD><TD>............{{{15x - 30}}}</TD></TR></TABLE> 
 

Now how many times does {{{x}}} go into {{{15x}}}?
It goes in  {{{15}}} times  (ie {{{15x /x =15}}}). So place {{{15}}} over {{{-x}}} 
 
<TABLE border=0><TR><TD></TD><TD>{{{x^2+8x+15}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - 16x}}}</TD></TR><TR><TD></TD><TD>............{{{15x - 30}}}</TD></TR></TABLE>

Now multiply {{{15}}} by {{{x - 2}}} to get {{{15x - 30}}}

<TABLE border=0><TR><TD></TD><TD>{{{x^2+8x+15}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - 16x}}}</TD></TR><TR><TD></TD><TD>............{{{15x - 30}}}</TD></TR><TR><TD></TD><TD>............{{{15x - 30}}}</TD></TR></TABLE> 

Now Subtract {{{15x - 30}}} from {{{15x - 30}}}

<TABLE border=0><TR><TD></TD><TD>{{{x^2+8x+15}}} </TD></TR>
<TR><TD><TABLE frame=rhs><TR><TD>{{{x-2}}}</TD></TR></TABLE></TD><TD><TABLE frame=above><TR><TD>{{{x^3+6x^2-x-30}}}</TD></TR></TABLE></TD></TR><TR><TD></TD><TD>{{{x^3 - 2x^2}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - x - 30}}}</TD></TR><TR><TD></TD><TD>......{{{8x^2 - 16x}}}</TD></TR><TR><TD></TD><TD>............{{{15x - 30}}}</TD></TR><TR><TD></TD><TD>............{{{15x - 30}}}</TD></TR><TR><TD></TD><TD>..................{{{(0)}}}</TD></TR></TABLE> 


So we get a remainder of zero. This means {{{x-2}}} is a factor of  {{{x^3+6x^2-x-30}}}