Question 1030202
Solve the partial fraction decomposition of the rational expression: 
(3x^2+49) / (x(x+7)^2) = (A/x) + (B/(x+7)) + (C/(x+7)^2)
--------------------------
Equate the numerators of the two sides::
3x^2 + 49 = A(x+7)^2 + B(x(x+7)) + Cx
-------
3x^2 + 49 = A(x^2+14x + 49) + B(x^2+7x) + Cx
-------
3x^2 + 49 = (A+B)x^2 + (14A +7B +C)x + 49A 
--------
Equate the proper coefficients:
A+B = 3
14A + 7B + C = 0
49A = 49
----------
Solve for A, B, and C
A = 1
B = 3-1 = 2
-----
C = -14-14 = -28
------------------------
(3x^2+49) / (x(x+7)^2) = (A/x) + (B/(x+7)) + (C/(x+7)^2)
----------------
(3x^2+49) / (x(x+7)^2) =  = 1/x + 2/(x+7) - 28/(x+7)^2
--------------------
Cheers,
Stan H.
---------------

-----
3x^2 + 49 = 1/(x+7)^2 + 2/