Question 1030097
<font face="Times New Roman" size="+2">


*[illustration WalkTowardBuilding.jpg]


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \tan(45^\circ)\ =\ \frac{h}{x}]


But


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \tan(45^\circ)\ =\ 1]


So


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{h}{x}\ =\ 1\ \Right\ h\ =\ x]


Then, using our newly discovered knowledge about *[tex \Large h]:


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \tan(30^\circ)\ =\ \frac{h}{400\ +\ x}\ =\ \frac{x}{400\ +\ x}]


But


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \tan(30^\circ)\ \approx\ 0.577]


So


*[tex \LARGE \ \ \ \ \ \ \ \ \ \ \frac{x}{400\ +\ x}\ \approx\ 0.577]


I'll let you handle the rest of the algebra and arithmetic.  Remember to round to the nearest 10 feet.


John
*[tex \LARGE e^{i\pi}\ +\ 1\ =\ 0]
My calculator said it, I believe it, that settles it

*[tex \Large \ \
*[tex \LARGE \ \ \ \ \ \ \ \ \ \  

</font>