Question 1029167
Set I is the smaller integer
Set J as the larger integer
J = 8I - 2
{{{J^2 - I^2 = 884}}}
Substituting (8I - 2) for J
{{{(8I - 2)^2 - I^2 = 884}}}
{{{64I^2 - 32I + 4 - I^2 = 884}}}
{{{63I^2 - 32I + 4 = 884}}}
subtract 884 from each side
{{{63I^2 - 32I - 880 = 0}}}
The formula is
{{{(-b +-sqrt(b^2 - 4ac))/(2a))}}}
a = 63 , b = -32 , c = -880
{{{((-(-32) +-sqrt((-32)^2 - 4(63)(-880)))/(2(63)))}}}
{{{((32 +-sqrt(1024 + 221760))/126)}}}
{{{((32 +sqrt(222784))/126)}}} or {{{((32 -sqrt(222784))/126)}}}
{{{((32 +472)/126)}}} or {{{((32 -472)/126)}}}
{{{((504)/126)}}} or {{{((-440)/126)}}}
{{{4}}} or {{{((-220)/63)}}}