Question 1029598
d(t) = 4.5 + 1.5 sin pi t/12 
:
5 = 4.5 + (1.5 * sin(pi * t/12))
:
0.5 = 1.5 * sin(pi * t/12)
:
note that pi = 180 degrees
:
1/3 = sin(15t)
:
determine angle from inverse sin function = 1/3
:
15t = 19.471220634
:
*********************************
t = 1.298081376 approx 1.3 hours
*********************************
:
we need 9 hours to unload the ship
:
d(10.3) = 4.5 + (1.5 * sin(pi * (10.3)/12)) =
:
4.5 + (1.5 * 0.430511097) = 5.145766646 meters
:
****************************************************************
*****yes, the ship will be able to exit 9 hours later
:
the sin curve is periodic, here is a graph of the equation
:
{{{ graph(300, 200, -20, 20, -1, 7, 4.5 + 1.5*sin(pi*(x/12))) }}} 
:
we want to know the value of t when the sin(15t) = 1/3 again *****
: 
note we subtract 19.471220634 from 180 = 160.528779366
:
15t = 160.528779366
:
t = 10.701918624 
:
***The ship has an addition 24 minutes before it can not sale out of the harbor
: