Question 1029075
Vertex and intercepts are correct.
The graphs looks correct based on your equations.
.
.
.
*[illustration fc5.JPG].
.
.
.
For focus, use the focus form,
{{{4p(y-k)=(x-h)^2}}}
Outer,
{{{4p(y-630)=x^2}}} 
When {{{x=315}}},{{{y=0}}}
{{{4p(-630)=(315)^2}}}
{{{p=(315)^2/(-4(630))}}}
{{{p=-315/8}}}
The focus is then,
({{{0}}},{{{k+p}}})
({{{0}}},{{{630-315/8}}})
({{{0}}},{{{4725/8}}})
({{{0}}},{{{590&5/8}}})
Directrix,
({{{0}}},{{{k-p}}})
({{{0}}},{{{630+315/8}}})
({{{0}}},{{{5355/8}}})
({{{0}}},{{{669&3/8}}})
Focus is correct, directrix is incorrect for outer.
.
.
.
Inner,
{{{4p(y-630)=x^2}}} 
When {{{x=270}}},{{{y=0}}}
{{{4p(-615)=(270)^2}}}
{{{p=(270)^2/(-4(615))}}}
{{{p=-1215/41}}}
The focus is then,
({{{0}}},{{{k+p}}})
({{{0}}},{{{615-1215/41}}})
({{{0}}},{{{24000/41}}})
({{{0}}},{{{585&15/41}}})
Directrix,
({{{0}}},{{{k+p}}})
({{{0}}},{{{615+1215/41}}})
({{{0}}},{{{26430/41}}})
({{{0}}},{{{644&26/41}}})
Focus is correct, directrix is incorrect for inner.
.
.
.
You've got most of it down. 
Just need to work on the directrix.