Question 88498
Lets check the solution {{{x=2}}} first


So let our test zero equal 2



Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of the numerator to the right of the test zero.<TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 1)

<TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

    Multiply 2 by 1 and place the product (which is 2)  right underneath the second  coefficient (which is -2)

    <TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>2</TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

    Add 2 and -2 to get 0. Place the sum right underneath 2.

    <TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>2</TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>0</TD><TD></TD><TD></TD></TR></TABLE>

    Multiply 2 by 0 and place the product (which is 0)  right underneath the third  coefficient (which is -6)

    <TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>2</TD><TD>0</TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>0</TD><TD></TD><TD></TD></TR></TABLE>

    Add 0 and -6 to get -6. Place the sum right underneath 0.

    <TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>2</TD><TD>0</TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>0</TD><TD>-6</TD><TD></TD></TR></TABLE>

    Multiply 2 by -6 and place the product (which is -12)  right underneath the fourth  coefficient (which is 12)

    <TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>2</TD><TD>0</TD><TD>-12</TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>0</TD><TD>-6</TD><TD></TD></TR></TABLE>

    Add -12 and 12 to get 0. Place the sum right underneath -12.

    <TABLE cellpadding=10><TR><TD>2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>2</TD><TD>0</TD><TD>-12</TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>0</TD><TD>-6</TD><TD>0</TD></TR></TABLE>

Since the last column adds to zero, we have a remainder of zero. This means {{{x=2}}} is a solution of  {{{x^3 - 2x^2 - 6x + 12}}}


Now lets look at the bottom row of coefficients:


The first 3 coefficients (1,0,-6) form the quotient


{{{x^2 - 6}}}



So {{{(x^3 - 2x^2 - 6x + 12)/(x-2)=x^2 - 6}}}



So now lets solve {{{x^2 - 6}}}


{{{x^2 - 6=0}}}



Now let's use the quadratic formula to solve for x:



Starting with the general quadratic


{{{ax^2+bx+c=0}}}


the general solution using the quadratic equation is:


{{{x = (-b +- sqrt( b^2-4*a*c ))/(2*a)}}}


So lets solve {{{x^2-6=0}}} (note: since the polynomial does not have an "x" term, the 2nd coefficient is zero. In other words, b=0. So that means the polynomial really looks like {{{x^2+0*x-6=0}}}  notice {{{a=1}}}, {{{b=0}}}, and {{{c=-6}}})


{{{x = (-0 +- sqrt( (0)^2-4*1*-6 ))/(2*1)}}} Plug in a=1, b=0, and c=-6




{{{x = (-0 +- sqrt( 0-4*1*-6 ))/(2*1)}}} Square 0 to get 0




{{{x = (-0 +- sqrt( 0+24 ))/(2*1)}}} Multiply {{{-4*-6*1}}} to get {{{24}}}




{{{x = (-0 +- sqrt( 24 ))/(2*1)}}} Combine like terms in the radicand (everything under the square root)




{{{x = (-0 +- 2*sqrt(6))/(2*1)}}} Simplify the square root




{{{x = (-0 +- 2*sqrt(6))/2}}} Multiply 2 and 1 to get 2


So now the expression breaks down into two parts


{{{x = (-0 + 2*sqrt(6))/2}}} or {{{x = (-0 - 2*sqrt(6))/2}}}



which simplifies to


{{{x = sqrt(6)}}} or {{{x = -sqrt(6)}}}



So our solutions are:


{{{x=2}}}, {{{x=sqrt(6)}}} or {{{x=-sqrt(6)}}}










------------------------------------------------------------------------------

Now lets see if {{{x=-2}}} is a solution


So let our test zero equal -2


Now set up the synthetic division table by placing the test zero in the upper left corner and placing the coefficients of the numerator to the right of the test zero.<TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

Start by bringing down the leading coefficient (it is the coefficient with the highest exponent which is 1)

<TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD></TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

    Multiply -2 by 1 and place the product (which is -2)  right underneath the second  coefficient (which is -2)

    <TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>-2</TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD></TD><TD></TD><TD></TD></TR></TABLE>

    Add -2 and -2 to get -4. Place the sum right underneath -2.

    <TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>-2</TD><TD></TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>-4</TD><TD></TD><TD></TD></TR></TABLE>

    Multiply -2 by -4 and place the product (which is 8)  right underneath the third  coefficient (which is -6)

    <TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>-2</TD><TD>8</TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>-4</TD><TD></TD><TD></TD></TR></TABLE>

    Add 8 and -6 to get 2. Place the sum right underneath 8.

    <TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>-2</TD><TD>8</TD><TD></TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>-4</TD><TD>2</TD><TD></TD></TR></TABLE>

    Multiply -2 by 2 and place the product (which is -4)  right underneath the fourth  coefficient (which is 12)

    <TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>-2</TD><TD>8</TD><TD>-4</TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>-4</TD><TD>2</TD><TD></TD></TR></TABLE>

    Add -4 and 12 to get 8. Place the sum right underneath -4.

    <TABLE cellpadding=10><TR><TD>-2</TD><TD>|</TD><TD>1</TD><TD>-2</TD><TD>-6</TD><TD>12</TD></TR><TR><TD></TD><TD>|</TD><TD></TD><TD>-2</TD><TD>8</TD><TD>-4</TD><TD></TD></TR><TR><TD></TD><TD></TD><TD>1</TD><TD>-4</TD><TD>2</TD><TD>8</TD></TR></TABLE>

Since the last column adds to 8, we have a remainder of 8. This means {{{x=-2}}} is <b>not</b> a solution of  {{{x^3 - 2x^2 - 6x + 12}}}

Since {{{x=-2}}} is not a solution, this means that we cannot find any further roots