Question 1027685
Let {{{ s }}} = the length of a side of
the smaller cube
{{{ 6s^2  }}} = the surface area of the smaller cube
----------------
{{{ 25 / 64 = ( 6s^2 ) / ( 6*24^2 ) }}}
{{{ 25 / 64 =  s^2 / 24^2 }}}
{{{ 25/64 = ( s/24 )^2 }}}
Take the square root of both sides
{{{ 5/8 = s/24 }}}
Multiply both sides by {{{ 24 }}}
{{{ 15 = s }}}
This is the side of the smaller cube
-------------
{{{ 6s^2 = 6*15^2 }}}
{{{ 6s^2 = 6*225 }}}
{{{ 6s^2 = 1350 }}}
The surface area of the smaller cube is 1,350 cm2
---------------
check:
{{{ 25/64 = 1350 / ( 6*24^2 ) }}}
{{{ 25/64 = 1350 / 3456 }}}
{{{ .390625 = .390625 }}}
OK