Question 1026256
<table border=1 cellpadding=3>
<tr><th>Number</th><th>Statement</th><th>Reason</th></tr>
<tr><td>1.</td><td>3^(n-1)+3^(n-1)+3^(n-1) </td><td>NA</td></tr>
<tr><td>2.</td><td>3 * [3^(n-1)] </td><td>Combine like terms</td></tr>
<tr><td>3.</td><td>3^1 * [3^(n-1)] </td><td>Rewriting the first '3' as '3^1'</td></tr>
<tr><td>4.</td><td>3^[1+(n-1)] </td><td>Using the rule x^y*x^z = x^(y+z)</td></tr>
<tr><td>5.</td><td>3^(1-1+n) </td><td>Associative and commutative properties of addition</td></tr>
<tr><td>6.</td><td>3^(0+n) </td><td>Combine like terms</td></tr>
<tr><td>7.</td><td>3^n </td><td>Use the rule 0+x = x</td></tr></table>


So in the end, 3^(n-1)+3^(n-1)+3^(n-1) simplifies to 3^n


The final answer is 3^n