Question 1025576
The train can overtake the car only
if it is faster than the car, so it 
definitely must be faster
----------------------
Let {{{ s[c] }}} = the speed of the car in km/hr
Let {{{ s[t] }}} = the speed of the train in km/hr
------------------------------
When they travel towards eachother, think of
one of them standing still and the other 
moving at the sum of their speeds
------------------------------
Moving towards eachother:
{{{ 180 = ( s[t] + s[c] )*(5/6) }}}
{{{ s[t] + s[c] = (6/5)*180 }}}
(1) {{{ s[t] + s[c] = 216 }}}
------------------------
When they travel in the same direction, 
subtract the speeds. The car has a {{{ 180 }}} km
head start. 
In {{{ 1.8 }}} hrs, the car travels {{{ s[c]*1.8 }}} km
The train travels {{{ s[t]*1.8 }}} km
--------------
I can say:
{{{ s[t]*1.8 = s[c]*1.8 + 180 }}}
{{{  s[t]*1.8 - s[c]*1.8 = 180 }}}
{{{ 1.8*( s[t] - s[c] ) = 180 }}}
(2) {{{ s[t] - s[c] = 100 }}}
---------------------
Add the equations
(1) {{{ s[t] + s[c] = 216 }}}
(2) {{{ s[t] - s[c] = 100 }}}
---------------------
{{{ 2s[t] = 316 }}}
{{{ s[t] = 158 }}}
and
(1) {{{ s[t] + s[c] = 216 }}}
(1) {{{ 158 + s[c] = 216 }}}
(1) {{{ s[c] = 58 }}}
-----------------------
The speed of the train is 158 km/hr
check:
{{{ 180 = ( s[t] + s[c] )*(5/6) }}}
{{{ 180 = ( 158 + 58 )*(5/6) }}}
{{{ (6/5)*180 = 216 }}}
{{{ 1080 = 5*216 }}}
{{{ 1080 = 1080 }}}
OK