Question 1017903
<pre>
{{{matrix(2,1,lim,"x->3")}}}{{{((2sqrt(x+1)-4^"")/(2x^2-x-15))}}}

Multiply by the conjugate of the numerator or denominator
(whichever has the square root) over itself:

{{{matrix(2,1,lim,"x->3")}}}{{{((2sqrt(x+1)-4^"")/(2x^2-x-15))*

( (2sqrt(x+1)+4^"")/(2sqrt(x+1)+4^"") )


}}}

Use FOIL on the top:

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4(x+1)+8sqrt(x+1)-8sqrt(x+1)-16^"")/

((2x^2-x-15)*(2sqrt(x+1)+4^"") ))

}}}

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4(x+1)+cross(8sqrt(x+1))-cross(8sqrt(x+1))-16^"")/

((2x^2-x-15)*(2sqrt(x+1)+4^"") ))

}}}

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4(x+1)-16^"")/

((2x^2-x-15)*(2sqrt(x+1)+4^"") ))

}}}

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4x+4-16^"")/

((2x^2-x-15)*(2sqrt(x+1)+4^"") ))

}}}

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4x-12^"")/

((2x^2-x-15)*(2sqrt(x+1)+4^"") ))

}}}

Factor out common factor on top.
Factor quadratic in denominator.

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4(x-3)^"")/

(((x-3)(2x+5)^"")*(2sqrt(x+1)+4^"") ))

}}}

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4(cross(x-3))^"")/

(((cross(x-3))(2x+5)^"")*(2sqrt(x+1)+4^"") ))

}}}

{{{matrix(2,1,lim,"x->3")}}}{{{(

(4^"")/

((2x+5^"")*(2sqrt(x+1)+4^"") ))

}}}{{{""=""}}}

{{{(

(4^"")/

((2(3)+5^"")*(2sqrt((3)+1)+4^"") ))

}}}{{{""=""}}}


{{{(

(4^"")/

((6+5^"")*(2sqrt(4)+4^"") ))

}}}{{{""=""}}}



{{{(

(4^"")/

((11^"")*(2(2)+4^"") ))

}}}{{{""=""}}}

{{{(

(4^"")/

((11^"")*(8^"") ))

}}}{{{""=""}}}

{{{

4/88

}}}{{{""=""}}}

{{{1/22}}}

Edwin</pre>