Question 1023073
You want to show it in pure text as P=Ae^(kt) and when rendered,  {{{P=Ae^(kt)}}}.


Let t be number of years after 1992.  This means that 1998 uses t=6.  Also, year 2012 is t=10.  A=72  for 72 million people at t=0.


{{{76=72*e^(k*6)}}}
{{{ln(76)=ln(72*e^(k*6))}}}
{{{ln(76)=ln(72)+6k*ln(e)}}}
{{{6k*1+ln(72)=ln(76)}}}
{{{6k=ln(76)-ln(72)}}}
{{{k=(ln(76)-ln(72))/6}}}--------compute this for the value of k.



Now your model is  {{{P=72*e^(0.009011*t)}}}; just let t=10 and evaluate P.