Question 1021852
First find the limits of integration.
{{{y=x^2-13.8x}}}
{{{y=5.2x-x^2}}}
So,
{{{x^2-13.8x=5.2x-x^2}}}
{{{2x^2-19x=0}}}
{{{x(2x-19)=0}}}
Two solutions:
{{{x=0}}}
and
{{{2x-19=0}}}
{{{2x=19}}}
{{{x=19/2}}}
Integrate.
{{{A=int((5.2x-x^2-(x^2-13.8x)),dx,0,19/2)}}}
{{{A=int(19x-2x^2),dx,0,19/2)}}}
{{{A=19(x^2/2)-(2/3)x^3+C}}}}
{{{A=(19/2)(19/2)^2-(2/3)(19/2)^3}}}
{{{A+(1/3)(19/2)^3}}}
{{{A=6859/24}}}
.
.
.
*[illustration df9.JPG].