Question 87844
{{{sqrt(1*x^4y^3)}}}

{{{sqrt(1*x^2*x^2*y*y^2)}}} Factor {{{x^4y^3}}} into {{{x^2*x^2*y*y^2}}}
 
{{{sqrt(1)*sqrt(x^2)*sqrt(x^2)*sqrt(y)*sqrt(y^2)}}} Break up the square roots using the identity {{{sqrt(x*y)=sqrt(x)*sqrt(y)}}}
 
{{{1*sqrt(x^2)*sqrt(x^2)*sqrt(y)*sqrt(y^2)}}} Take the square root of the perfect square 1 to get 1
 
{{{1*x*x*sqrt(y)*y}}} Take the square root of the perfect squares {{{x^2}}},and {{{y^2}}} to get {{{x}}},and {{{y}}} 
 
{{{1*x^2y*sqrt(y)}}} Multiply the common terms 

{{{1*x^2y*sqrt(y)}}} Rearrange the terms