Question 1021113
(3/m+3)-(5/m^2+ 3m)= 1/m


{{{(3/m+3)-(5/m^2+ 3m)= 1/m}}}
Common denominator is {{{m^2}}}.


{{{3/m+3-5/m^2-3m=1/m}}}
{{{3/m-5/m^2-3m-1/m=0}}}
{{{2/m-5/m^2-3m=0}}}
{{{m^2(2/m-5/m^2-3m)=m^2*0}}}
{{{2m-5-3m^3=0}}}
{{{-3m^3+2m-5=0}}}
{{{3m^3-2m+5=0}}}


Refer to Rational Roots Theorem.  You can expect NONE of the roots to be 3 or 7.  Check using a graphing tool.